这篇文章纯粹是写给我自己,也算是最近调研的总结。Deep
Learning是最近人工智能大热的一个导火索,虽然已经被玩烂了,但是还是稍微补充一些这方面的知识。或许,人工智能的革命会越来越快呢?
1. 机器学习是做什么的
Deep Learning又叫做深度学习,最近人工智能的火爆,AlphaGo的成名,以至于各种语音识别技术(Siri等)突飞猛进,都离不开这几年Deep
Learning级数的大发展。
首先,机器要实现所谓的人工智能,其中一个关键节点是模式识别,或者机器学习,其核心就是能够比如识别出人类的手写文字,识别出语音,在这一步基础上,才有后面的分析
的步骤。
在机器学习或者模式识别领域,数十年下来已经了非常多成熟的算法,虽然他们在复杂条件下的准确率只有80%-90%,但是也足以适用绝大部分的场景,比如车牌识别。
传统的机器学习方法有神经网络(ANN),支持向量机(SVM),语音识别领域前些年大热的则是隐形马尔可夫模型(HMM),此外还有灰常多不同的工具和发明被各路大牛探索出来。
以语音识别的HMM为例,识别率大道90%左右则一直无法提升。虽然它已经超过了种种其他各种机