其实,Deep Learning的基础奠定于几十年前的神经网络。
然而在90年代和整个2000年代,神经网络被工业和学术界抛弃了。为什么?因为效果还不如比如图像处理里面的各种adaboost、ASM等等特定方法,语音识别里面效果则远远不如HMM隐形马尔可夫模型。其实差距的关键,在于神经网络依赖于大量的标定数据用于学习,以及耗费大量的计算资源用于训练。
这两者在2010年之前都是不可能的。
随着移动互联网的爆发,计算性能的提高,学术界能获取到的标定数据指数型增长
,GPU并行计算能力也有了飞跃(其实计算能力的提高带来的另一个附加变革则是同样被丢弃在垃圾堆里面30多年的VR)。
直到2012年左右,深度神经网络开始兴起,伴随而来的是识别率的不断刷新,现在图像和语音方面都已经能够做到高于人类的平均识别率了。也难怪人工智能这2年开始在投资领域和科技界不断冒泡。
这里面几点值得注意:
1. 科技的发展是交替
的。生物计算、VR、神经网络在计算性能的提升后重生;曾经遇到瓶颈的PC发展由于互联网和移动互联网,改变了整个人类社群的接入(连接)结构;当下正处于低潮期的所有产业,会由